Tumor necrosis factor-alpha increases reactive oxygen species by inducing spermine oxidase in human lung epithelial cells: a potential mechanism for inflammation-induced carcinogenesis.
نویسندگان
چکیده
Inflammation has been implicated in the development of many human epithelial cancers, including those of the stomach, lung, colon, and prostate. Tumor necrosis factor-alpha (TNF-alpha) is a potent pleiotropic, proinflammatory cytokine produced by many cells in response to injury and inflammation. Here, we show that TNF-alpha exposure results in increased production of reactive oxygen species (ROS), with a concomitant increase in the production of 8-oxo-deoxyguanosine, a marker for oxidative DNA damage, in human lung bronchial epithelial cells. The source of the ROS in TNF-alpha-treated cells was determined by both pharmacologic and small interfering RNA (siRNA) strategies to be spermine oxidase (SMO/PAOh1). SMO/PAOh1 oxidizes spermine into spermidine, 3-aminopropanal, and H(2)O(2). Inhibition of TNF-alpha-induced SMO/PAOh1 activity with MDL 72,527 or with a targeted siRNA prevented ROS production and oxidative DNA damage. Further, similar induction in SMO/PAOh1 is observed with treatment of another inflammatory cytokine, interleukin-6. The data are consistent with a model that directly links inflammation and DNA damage through the production of H(2)O(2) by SMO/PAOh1. Further, these results suggest a common mechanism by which inflammation from multiple sources can lead to the mutagenic changes necessary for the development and progression of epithelial cancers.
منابع مشابه
Role of Caspases and Reactive Oxygen Species in Rose Bengal-Induced Toxicity in Melanoma Cells
Objective We have previously shown that Rose Bengal (RB) alone, not as a photosensitiser, could induce apoptotic- and non-apoptotic cell death in different melanoma cell lines. To clarify RB-induced toxicity mechanisms, role of caspases and reactive oxygen specious (ROS) were studied in melanoma cells. Material and Methods Human melanoma cell lines, Me 4405 and Sk-Mel-28 were cultured in DM...
متن کاملIncreased spermine oxidase expression in human prostate cancer and prostatic intraepithelial neoplasia tissues.
BACKGROUND Inflammation has been strongly implicated in prostate carcinogenesis, but the precise molecular mechanisms linking inflammation and carcinogenic DNA damage are not known. Induction of the polyamine catabolic enzyme, spermine oxidase (SMO) has been linked to increased reactive oxygen species (ROS) and DNA damage in human gastric and lung epithelial cells and suggest direct mechanistic...
متن کاملInhibitory effect of butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation.
Cell adhesion molecules play an important role in inflammatory response, angiogenesis and tumor progression. Butein (tetrahydroxychalcone) is a small molecule from natural sources, known to be a potential therapeutic drug with anti-inflammatory, anticancer and antioxidant activities. In the present study, we investigated the inhibitory effect of b...
متن کاملCurcumin sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through reactive oxygen species-mediated upregulation of death receptor 5 (DR5).
Curcumin exhibits anti-inflammatory and antitumor activities. Although its functional mechanism has not been elucidated so far, numerous studies have shown that curcumin induces apoptosis in cancer cells. In the present study, we show that subtoxic concentrations of curcumin sensitize human renal cancer cells to the tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-mediated apopto...
متن کاملTNF-alpha/cycloheximide-induced apoptosis in intestinal epithelial cells requires Rac1-regulated reactive oxygen species.
Previously we have shown that both Rac1 and c-Jun NH(2)-terminal kinase (JNK1/2) are key proapoptotic molecules in tumor necrosis factor (TNF)-alpha/cycloheximide (CHX)-induced apoptosis in intestinal epithelial cells, whereas the role of reactive oxygen species (ROS) in apoptosis is unclear. The present studies tested the hypothesis that Rac1-mediated ROS production is involved in TNF-alpha-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 23 شماره
صفحات -
تاریخ انتشار 2006